Bayesian Multi-view Tensor Factorization

نویسندگان

  • Suleiman A. Khan
  • Samuel Kaski
چکیده

We introduce a Bayesian extension of the tensor factorization problem to multiple coupled tensors. For a single tensor it reduces to standard PARAFAC-type Bayesian factorization, and for two tensors it is the first Bayesian Tensor Canonical Correlation Analysis method. It can also be seen to solve a tensorial extension of the recent Group Factor Analysis problem. The method decomposes the set of tensors to factors shared by subsets of the tensors, and factors private to individual tensors, and does not assume orthogonality. For a single tensor, the method empirically outperforms existing methods, and we demonstrate its performance on multiple tensor factorization tasks in toxicogenomics and functional neuroimaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Inference For Probabilistic Latent Tensor Factorization with KL Divergence

Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modelling multi-way data. Not only the common tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents full Bayesian inference via variational Bayes that facilitates more powerful modelling and allows more sophist...

متن کامل

Multi-HDP: A Non Parametric Bayesian Model for Tensor Factorization

Matrix factorization algorithms are frequently used in the machine learning community to find low dimensional representations of data. We introduce a novel generative Bayesian probabilistic model for unsupervised matrix and tensor factorization. The model consists of several interacting LDA models, one for each modality. We describe an efficient collapsed Gibbs sampler for inference. We also de...

متن کامل

Bayesian Factorization Machines

This work presents simple and fast structured Bayesian learning for matrix and tensor factorization models. An unblocked Gibbs sampler is proposed for factorization machines (FM) which are a general class of latent variable models subsuming matrix, tensor and many other factorization models. We empirically show on the large Netflix challenge dataset that Bayesian FM are fast, scalable and more ...

متن کامل

Multi-View Subspace Clustering via Relaxed L1-Norm of Tensor Multi-Rank

In this paper, we address the multi-view subspace clustering problem. Our method utilize the circulant algebra for tensor, which is constructed by stacking the subspace representation matrices of different views and then shifting, to explore the high order correlations underlying multi-view data. By introducing a recently proposed tensor factorization, namely tensor-Singular Value Decomposition...

متن کامل

A Bayesian Tensor Factorization Model via Variational Inference for Link Prediction

Probabilistic approaches for tensor factorization aim to extract meaningful structure from incomplete data by postulating low rank constraints. Recently, variational Bayesian (VB) inference techniques have successfully been applied to large scale models. This paper presents full Bayesian inference via VB on both single and coupled tensor factorization models. Our method can be run even for very...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014